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Abstract— In this work we present FreDSNet, a deep learning
solution which obtains semantic 3D understanding of indoor
environments from single panoramas. Omnidirectional images
reveal task-specific advantages when addressing scene under-
standing problems due to the 360-degree contextual information
about the entire environment they provide. However, the inher-
ent characteristics of the omnidirectional images add additional
problems to obtain an accurate detection and segmentation of
objects or a good depth estimation. To overcome these problems,
we exploit convolutions in the frequential domain obtaining
a wider receptive field in each convolutional layer. These
convolutions allow to leverage the whole context information
from omnidirectional images. FreDSNet is the first network
that jointly provides monocular depth estimation and semantic
segmentation from a single panoramic image exploiting fast
Fourier convolutions. Our experiments show that FreDSNet
has slight better performance than the sole state-of-the-art
method that obtains both semantic segmentation and depth
estimation from panoramas. FreDSNet code is publicly available
in https://github.com/Sbrunoberenguel/FreDSNet

I. INTRODUCTION

Understanding 3D indoor environments is a hot topic in
computer vision and robotics research [1][2]. The scene
understanding field has different branches which focus on
different key aspects of the environment. The layout recovery
problem has been in the spotlight for many years, obtaining
great results with the use of standard and omnidirectional
cameras [3][4][5][6]. This layout information is useful for
guiding autonomous robots [7][8] or doing virtual and aug-
mented reality systems. Another line of research focuses on
detecting and identifying objects and their classes in the
scene. There are many methods for conventional cameras
[9][10][11], which provide great results, however conven-
tional cameras are limited by their narrow field of view.
In recent years, works that use panoramas, usually in the
equirectangular projection, are increasing [12][13], providing
a better understanding of the whole environment. Besides,
the combination of semantic and depth information helps
to generate richer representations of indoor environments
[14][15]. In this work, we focus on obtaining, from equirect-
angular panoramas, two of the main pillars of 3D scene
understanding: semantic segmentation and monocular depth
estimation.

Without the adequate sensor, navigating autonomous ve-
hicles in unknown environments is an extremely challenging
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Fig. 1: Overview of our proposal. From a single RGB
panorama (up left), we make a semantic segmentation (up
right) and estimate a depth map (down left) of an indoor
environment. With this information we are able to reconstruct
in 3D the whole environment (down right).

task. Nowadays there is a great variety of sensors that
provide accurate and diverse information of the environ-
ment (LIDARs, cameras, microphones, etc.). Among these
possibilities, we choose to explore omnidirectional cameras,
which have become increasingly popular as main sensor
for navigation and interactive applications. These cameras
provide RGB information of all the surrounding and, with the
use of computer vision or deep learning algorithms, provide
rich and useful information of the environment.

In this paper, we introduce FreDSNet, a new deep neural
network which jointly provides semantic segmentation and
depth estimation from a single equirectangular panorama (see
Fig. 1). We propose the use of the Fast Fourier convolution
(FFC) [16] to leverage the wider receptive field of these
convolutions and take advantage of the wide field of view of
360 panoramas. Besides, we use a joint training of semantic
segmentation and depth, where each task can benefit from
the other. Semantic segmentation provides information about
the distribution of the objects as well as their boundaries,
where usually are hard discontinuities in depth. On the other
hand, the depth estimation provides the scene’s scale and
the location of the objects inside the environment. With this
information, we provide accurate enough information for
applications as navigation of autonomous vehicles, virtual
and augmented reality and scene reconstruction.

The main contribution of this paper is that FreDSNet is the
first solution which jointly obtain semantic segmentation and
depth estimation from single panoramas. For that, we include
and exploit the FCC in a new network architecture for
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Fig. 2: Architecture of our Frequential Depth estimation and Semantic segmentation Network (FreDSNet). The encoder
part is formed by a feature extractor (ResNet) and four encoder blocks. The decoder part is formed by six decoding blocks
and two branches that predict depth and semantic segmentation. The skip connections from the encoder to the decoder use
learned weights.

visual scene understanding. These convolutions have higher
effective receptive field than standard convolutions, obtaining
more context information in early layers. This is a key feature
for our proposal since, being aware of the context improves
the understanding of the scene and only with omnidirectional
images we can obtain this information.

II. RELATED WORKS

Semantic segmentation The semantic segmentation on
perspective images is a well-studied field. We can find
many works on object detection [11], semantic segmentation
[10][17] or both tasks [9][18] from perspective cameras.
However, omnidirectional images pose a harder problem
which is more difficult to tackle. Then, only a few works are
able to make semantic segmentation from omnidirectional
images [12][19] and object detection [13]. Since omnidi-
rectional images present heavy distortions (e.g. in spherical
projections, like equirectangular images, this distortion is
more accentuated in the mapping of the poles) these kinds
of images are difficult to manually annotate. Nevertheless,
due to the wide field of view of these images (e.g. in the
spherical projection, we can see all the surroundings in a
single image), the use of omnidirectional images in semantic
segmentation is an active field of study since we can obtain
a complete semantic understanding of the environment from
a single image.

Depth estimation Monocular depth estimation is a re-
search topic that has been on the spotlight in recent years.
With the rise of deep learning methods, many works on depth
estimation from conventional cameras have appeared with
different approaches such as camera adapted convolutions
[20]; convolutional networks with masking layers [21]; rela-
tive depth maps [22] or optical flow [23]. Almost at the same
time, different works on depth estimation from panoramic
images started to appear for indoor scene understanding
purposes taking advantage of recurrent networks [24], atten-
tion mechanisms [19], twin networks [25] or convolutional
networks [26]. Each work presents particular approaches for
monocular depth estimation, being an open field of study
with great interest and many applications.

Network architecture Many recent works on seman-
tic segmentation or depth estimation rely on convolutional

encoder-decoder architectures with some recurrent [24] or
attention mechanism [19] as hidden representation of the
environment. This kind of architectures aim to reduce the
spatial resolution of the input image, increasing the number
of feature maps in the encoder part, relating the general
context of the environment in the hidden representation
and up-sampling it in the decoder part to obtain the de-
sired information. However, the traditional encoder-decoder
architecture which relies on standard convolutions [26] or
geometrical approximations [12] suffers from slow growth
of the effective receptive field of the convolutions, losing
the general context information that omnidirectional images
provide.

In this work, we propose an encoder-decoder architecture
for our network. However, we propose an adaptation of
the fast Fourier convolution presented in [16], which we
denominate Fourier Block since we modify the behavior of
the block. These convolutions have proved that can ’see’ the
whole image at once, obtaining a higher effective receptive
field from early layers which leads to a better understanding
of omnidirectional images and the context information.

III. FREDSNET: MONOCULAR DEPTH AND SEMANTIC
SEGMENTATION

Our network follows an encoder-decoder architecture,
resembling U-net [27], with Resnet [28] as initial feature
extractor and two separated branches for depth estimation
and semantic segmentation. (see Fig.2). It is inspired by
BlitzNet [9] and PanoBlitzNet [13], using multi-resolution
encoding and decoding, in order to obtain a multi-scale
representation of the scene, and the use of skip connections,
which makes the training process more stable. Each branch
takes intermediate feature maps from the decoder part to
provide an output from the multi-scale decoded information.
What differentiates our architecture is how the blocks of
encoder and decoder are composed and how these parts are
interconnected.

A. Architecture

The proposed encoder blocks (FBC-N) are formed by a
Fourier Block (FB) followed by a down-scaling (N) and a
set of standard convolutions (W-conv) as shown in Fig.3a.
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Fig. 3: a) FBC-N: (FB) Fourier Block, (C) W-Convolution and (N) scaling. Between the FB and N we get the features for
the skip connection for the Decoder part. b) CFB-N: (C) W-Convolution, (FB) Fourier Block and (N) scaling. Between the
N and FB we add the skip connection from the encoder part.

The Fourier Block has the same structure as the FFC
implemented in [29], however we differ in the use of the
activation function. In the original work, they use a ReLu
activation function in the FFC (they propose an in-painting
method). However, recent works as [24] have proved that
ReLu function is not really suited for depth estimation, since
it is prone to make gradients vanish. Instead, we use PReLu
as activation function, which is more stable for monocular
depth estimation training [24]. The same activation function
change has been made in the Spectral block[16] from the
FB in order to homogenize the behavior of the network.
The output of the FB is the information that we use as
skip connection for the decoder part. After the FB, we re-
scale the feature map by a factor of N, where N<1 means a
down-scaling and N>1 an up-scaling, followed by a set of
standard convolutions defined as W-conv. The W-conv block
is defined as 3 consecutive Convolution-Batch normalization-
Activation function blocks with circular padding, taking into
account the continuity of panoramic images and their fea-
tures. This W-conv block follows the ResNet[28] bottleneck
structure for architecture homogeneity. As defined before, we
use PReLu as activation function. The output of the W-conv
is then added, and not concatenated, to the next scale-level
output of the feature extractor, as seen in Fig. 2.

The decoder part follows the same principle as the encoder
but in the inverse order, as shown in Fig 3b. The output of
the encoder is fed to the decoder blocks (CFB-N) where the
feature maps go through a W-conv block and then are up-
scaled. The scaled features are added with the corresponding
skip connection from the encoder, weighted with a learned
parameter, and then go through a FB. The output of each
decoder block is then fed to the next decoder block until we
recover the full resolution of the network input.

B. Semantic segmentation branch

From the different feature maps generated by our encoder-
decoder architecture, we need to extract the relevant informa-
tion for the semantic segmentation task. We use the last five
sets of feature maps from the decoder. We convolve and up-
scale each set of features into an intermediate representation.
However, instead of concatenating the feature maps, as done
in previous works as [9], we make a learned-weighted sum
of them to keep a more compact intermediate representation.
Finally, we convolve this intermediate representation into the
final representation of the semantic segmentation map. In this

branch we switch to a ReLu activation function instead of the
PReLu used in the main body of the architecture.

C. Depth estimation branch

For the depth estimation, we have created another sep-
arated branch that takes the last three blocks of feature
maps from the decoder part. We propose to use these three
sets of feature maps since they are the ones with higher
resolution, then with higher level of details. As done in
the semantic segmentation, we convolve and upscale the
features to an intermediate representation, where we add
them as a learned-weighted sum. Finally, we convolve again
the intermediate representation to make the depth estimation.
In this branch, we keep the PReLu activation function in
the convolution from the feature maps to the intermediate
representation. However, we switch to a ReLu function in the
last convolution since depth cannot be a negative value. We
tried different output functions, such as the PReLu activation
function or not using any, but the ReLu function provided the
best performance.

D. Loss functions

Semantic segmentation and depth estimation provide really
different information of the environment. However these
tasks have common characteristics that can benefit from
each other, such as the objects boundaries [30]. We want to
take advantage of these similarities making a joint training
where the semantic segmentation and the depth estimation
can be jointly predicted. For our training, we propose to train
both branches, segmentation and depth estimation, at the
same time and from the same input image. For the semantic
segmentation loss LSeg, we use the standard Cross Entropy
Loss and weights for the classes [31], as a solution for the
class imbalance in the dataset.

Similar to other state-of-the-art methods for monocular
depth estimation [24][25], we use an Adaptive Reverse Huber
Loss (Bc) as depth loss function LDep, defined as:

Bc(e)
{
|e| |e| ≤ c

e2+c2

2c |e|> c
, (1)

where e = Prediction−GroundTruth and c is defined as
the 20% of the maximum absolute error for each training
batch. Following the same idea as [24], we also define the
loss function as the sum of the Adaptive Reverse Huber
Loss on the depth map as well as the depth map gradients



(approximated as Sobel Filters). The final LDep is computed
as:

LDep = Bc1(e)+Bc2(∇x)+Bc2(∇y), (2)

where e defines the absolute depth error between the predic-
tion and ground truth, ∇x,∇y define absolute error between
the x, y depth map gradients of the prediction and ground
truth respectively, c1 is the threshold in eq. 1 for the absolute
depth map and c2 is the threshold in eq. 1 for the gradients.

In addition to the semantic segmentation and depth es-
timation standard losses, we add another two losses to
help in the joint training process. First, since the range
of the depth estimation output should be greater than the
semantic segmentation (i.e. the later is closer to a probability
distribution while the former is a distance between 0 and,
ideally, infinity), we add a term to force the depth estimation
branch to fill the depth range between the closest and farthest
pixels. To do so, we compute the mean square difference
between the minimum and maximum values of prediction
and ground truth in each batch as:

Lmar =

(
ymax

gt − ymax
pred

)2
+
(

ymin
gt − ymin

pred

)2

2
, (3)

where ymax
gt , ymax

pred , ymin
gt and ymin

pred are the maximum and
minimum values of the ground truth and predicted depth
maps respectively. Finally, to help in the object boundary def-
inition, we propose to use an object oriented loss Lob j. This
loss helps the network to better define the objects boundaries
as well as create the depth discontinuities that appear in these
boundaries. To compute the loss, we first compute per-class
depth maps from the network depth prediction and semantic
segmentation ground truth. Then we compute the mean of
the L1 Loss of each class depth map to obtain the final Lob j
as:

Lob j =
1
C

C

∑
i=0

L1(ygt
i,ypred

i), (4)

where C is the number of classes and ygt
i,ypred

i are the
ground truth and predicted class depth maps for the class
i respectively.

Our final training loss is the combination of the previous
losses. This joint loss function is computed as:

Ltotal = α1 ·LSeg +α2 ·LDep +α3 ·Lmar +α4 ·Lob j, (5)

where αi are regularizers to weight the relevance of each
individual loss in the final joint loss function. After a manual
tuning of these parameters, we set these regularizers as α =
[9.0,14.0,0.01,5.0], obtaining the best performance for our
network.

IV. EXPERIMENTS

In this section we present a set of experiments to validate
the joint training method proposed. We also make a compar-
ison with a state-of-the-art architecture for depth estimation
and semantic segmentation. Finally, we present qualitative
results and application examples for our network.

TABLE I: Ablation study of Loss functions. Best validation
metrics obtained on each training.

LSeg LDep Lmar Lob j MRE MAE mIoU mAcc
X X × × 0.0613 0.0950 60.3 81.9
X X × X 0.0583 0.0855 61.5 82.5
X X X × 0.0560 0.0898 60.6 81.6
X X X X 0.0553 0.0827 62.7 84.2

Lower is better Higher is better

TABLE II: Ablation study of joint training. Best validation
weights are used in each of the cases for the evaluation.

Training MRE MAE mIoU mAcc
Depth 0.1401 0.1773 - -
Semantic - - 40.3 55.1
Joint 0.0952 0.1327 46.1 63.1

Lower is better Higher is better

For all the experiments we use the Stanford2D3DS dataset
[32] with the first folder split, which uses Area 5 as test
set and the other areas for training and validation. We can
only use the Stanford2D3DS dataset for both tasks since it is
the only public dataset with semantic and depth information
for real equirectangular panoramas. For our training, we
perform data augmentations such as horizontal flipping,
random horizontal rotation and color jitter.

To evaluate our work and compare it with the state
of the art, we use the following metrics. For the depth
estimation task, we use the standard metrics introduced
by [26]. We use the Mean Relative Error (MRE), Mean
Absolute Error (MAE), Root-Mean Square Error of linear
(RMSE) and logarithmic (RMSElog) measures, and three
relative accuracy measures defined as the fraction of pixels
where the relative error is within a threshold of 1.25n for
n = 1,2,3 (δ 1,δ 2,δ 3). On the other hand, for the semantic
segmentation task, we use standard metrics as the mean
Intersection over Union (mIoU), computed as the average
IoU for each class except the Unknown class; and the mean
Accuracy (mAcc), computed as the average accuracy for each
class except the Unknown class.

A. Ablation study

In this first subsection, we substantiate the joint training of
depth and semantics and also evaluate the use of a combined
loss function.

Loss Function. We evaluate how the overall performance
of our network is affected by each loss function. For that
purpose, we perform the same joint training using the task-
specific losses and adding sequentially the new losses that we
propose in Section III-D. We evaluate the performance of the
network with four different metrics: two for depth estimation,
MRE and MAE; and two for semantic segmentation, mIoU
and mAcc. The results from Table I show that the use of
these new losses increase the performance of our network.
We have a greater improvement with the object oriented
loss Lob j in the semantic segmentation. This loss uses depth
and semantic information, providing an improvement in both
branches as well as the shared encoder-decoder. In addition



TABLE III: Quantitative comparison for Depth Estimation and Semantic Segmentation on the Stanford 2D3DS dataset [32].

Network MRE ↓ MAE ↓ RMSE ↓ RMSElog ↓ δ 1 ↑ δ 2 ↑ δ 3 ↑ mIoU ↑ mAcc ↑
HoHoNet 0.1124 0.2265 0.4027 0.0710 0.8994 0.9687 0.9879 30.7 40.5
FreDSNet 0.0952 0.1327 0.2727 0.0436 0.8424 0.9583 0.9863 46.1 63.1

with the margin loss Lmar, which helps to improve the depth
estimation, we observe that each task effectively benefit from
each other.

Joint training. On a second step, we show that the
joint training of depth estimation and semantic segmentation
benefits the overall performance of the network. For this
purpose, we train our network for task-specific purposes,
that means with only one of the branches at a time, and
in the proposed joint training, with both branches. Notice
that only half of the metrics are used for the task-specific
training, since the other half correspond to a different task.
In the task-specific training, we only use the specific loss
function for each task, i.e. we only use LDep for the specific
depth estimation training and LSeg for the specific semantic
segmentation training. We use the same metrics as in the
previous experiment to compare the performance of the
different training. The results presented on Table II confirm
our first intuition, which confirm the results of [30]. The
joint training of semantic segmentation and depth estimation
increases the performance of the network for both tasks.

B. State of the art comparison

We compare our work with the sole state-of-the-art method
which obtains semantic segmentation and depth estimation,
HohoNet [19]. We train this network in the same conditions
as our network and compare the performance of both pro-
posals.

We train both networks in one GPU Nvidia RTX2080-Ti.
The initial learning rate of our training is set to 1e−5 and
we use exponential decay and periodic step reductions in
the learning rate. For HohoNet[19], we use their available
code for training. The quantitative results of the evaluation
are presented in Table III. We also present qualitative results
and comparison of both networks in Figure 4.

An important remark is that our network provides, at the
same time, depth and semantic information while HohoNet
presents two slightly different architectures for task-specific
solutions. That means, to obtain a depth map and a semantic
segmentation with HohoNet we need to train two separate
networks and make the inference of two networks. Using
inference in parallel with HohoNet precludes the use of
the optional depth input of the trained HohoNet network
for semantic segmentation. For a fair comparison with our
network, we use this scheme in our results providing only
the RGB image as input information.

The quantitative comparison shows that our network has
a better performance than HohoNet with the same input in-
formation. The results from HohoNet presented in this paper
differ from the originals [19] since the training conditions
are different. In this case, we only train both networks in
the Stanford dataset, without pre-trained weights on other

datasets for the whole network, using the Area 5 only at
test and not during the training or validation steps. In these
conditions, FreDSNet performs better in the monocular depth
estimation and semantic segmentation tasks.

C. Scene understanding for navigation

In this third subsection we present different results from
our network and ideas of applications. With the combination
of semantics and depth, we can extract the free space
for navigation (extracting the floor) or compute where the
obstacles are located (computing the position of the different
segmented objects).

Navigation algorithms for mobile robots require to detect
the obstacles and the free space around the vehicle. With an
omnidirectional camera we can obtain RGB information of
the surroundings in one shot. Then, FreDSNet can simultane-
ously obtain a semantic and depth maps of the environment.
With this information, we can obtain different useful rep-
resentations of the scene, allowing a better interaction of a
mobile vehicle with the environment allowing a robot to be
autonomous in unknown environments. Also, in the case of
autonomous vehicles, it is important to be able to work in
real time. We have evaluated the feasibility of our network
for such a task obtaining that it can work at 33 frames per
second with panoramas of 512× 256 pixels of resolution
(average speed computed with the test set of the dataset).

As an example of the information that can be obtained
from our network, in Figure 5 we present several useful
environment representations from a single equirectangular
panorama. From left to right in the Figure, we show: free
floor reconstruction, thought for terrestrial robot navigation;
Room structure reconstruction, defines the maximum space
that a vehicle can move; Room and obstacles, includes the
room structure and the obstacles (in black) of the room; and
the semantic reconstruction, which defines the environment
and the different objects with which an autonomous vehicle
can interact in the environment.

V. CONCLUSION

We have presented FreDSNet, a neural network for joint
monocular depth estimation and semantic segmentation from
single equirectangular panoramas. Our network is the first
that exploits convolutions in the frequential domain for scene
understanding. Also, we have proposed a joint training which
improves the performance for both tasks, which has been
validated experimentally on the Stanford2D3DS dataset.

The experiments performed validate our proposed contri-
butions: the FFC is a good asset for indoor scene under-
standing allowing better understanding from more simple
network architectures and the joint training mutually benefits
the performance of both tasks. Besides, the comparison
made shows that we provide slightly better results for both
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Fig. 4: Qualitative comparison between HohoNet [19] and our proposal for semantic segmentation and depth estimation in
Stanford2D3DS [32].

RGB Semantic Segmentation Depth Estimation

Free Floor Room structure Room and obstacles Semantic reconstruction

Fig. 5: In the first row: RGB is the input of our network which outputs the Semantic Segmentation and Depth estimation.
In the second row: different useful environment representations that can be obtained from the output information provided
by FreDSNet. (For a better representation, the ceiling has been removed from all visualizations)

monocular depth estimation and semantic segmentation from
equirectangular panoramas than the sole state-of-the-art net-
work that also tackles both tasks under similar conditions.

The research of scene understanding methods is still an
open topic. Many different approaches are appearing, making
improvements in key aspects. In this work we provide a
novel solution which information can be used in many others

research fields such as virtual or augmented reality, robot
navigation and interaction with the environment.
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